I am using OpenRouteService (ORS) Matrix API in R to compute travel times between grid centroids (origins) and hospitals (destinations). However, I keep encountering the error:
Error: Openrouteservice API request failed [6004] Request parameters exceed the server configuration limits. Only a total of 3500 routes are allowed.
Despite ensuring that my total routes (origins * destinations) do not exceed 3,500, I still receive this error.
My Setup
I have: • 40 origins (grid centroids) • 85 destinations (hospitals) • Total routes: 40 * 85 = 3400 (should be under 3,500).
I have a total of 585 origins, however, I’m batching my request to use 40 origins at a time (see batch_size in the code below).
Please see my code below.
# Ensure `grid_coords` is a matrix for `nrow()`
if (!is.matrix(grid_coords) && !is.data.frame(grid_coords)) {
grid_coords <- do.call(rbind, grid_coords) # Convert list to matrix
}
if (!is.matrix(hospital_coords) && !is.data.frame(hospital_coords)) {
hospital_coords <- do.call(rbind, hospital_coords) # Convert list to matrix
}
# ORS API limits (adjust if needed)
batch_size <- 40 # Max centroids per batch
# Initialize results dataframe
results <- data.frame(
grid_id = integer(),
nearest_hospital = character(),
nearest_hospital_lon = numeric(),
nearest_hospital_lat = numeric(),
travel_time_min = numeric(),
stringsAsFactors = FALSE
)
for (i in seq(1, nrow(grid_coords), by = batch_size)) {
batch_end <- min(i + batch_size - 1, nrow(grid_coords))
centroid_batch <- grid_coords[i:batch_end, , drop = FALSE] # Matrix format
num_origins <- nrow(centroid_batch)
num_destinations <- nrow(hospital_coords)
total_routes <- num_origins * num_destinations
print(paste("Batch", i, ": Origins:", num_origins, "| Destinations:", num_destinations, "| Total Routes:", total_routes))
# Convert `centroid_batch` and `hospital_coords` to list format for ORS
centroid_list <- split(centroid_batch, seq(nrow(centroid_batch))) %>%
lapply(function(row) c(row[1], row[2]))
hospital_list <- split(hospital_coords, seq(nrow(hospital_coords))) %>%
lapply(function(row) c(row[1], row[2]))
# Combine origins and destinations into ORS-compatible format
locations <- c(centroid_list, hospital_list)
# Send batch request to ORS Matrix API
travel_matrix <- ors_matrix(
locations = locations,
profile = "foot-walking",
metrics = c("duration"),
units = "m"
)
# Extract relevant travel time matrix
travel_time_matrix <- travel_matrix$durations[1:num_origins, (num_origins + 1):(num_origins + num_destinations)] / 60
# Find nearest hospital by shortest travel time
nearest_hospital_index <- apply(travel_time_matrix, 1, function(x) ifelse(all(is.na(x)), NA, which.min(x)))
# Store results
batch_results <- data.frame(
grid_id = i:batch_end,
nearest_hospital = ifelse(is.na(hospitals$name[nearest_hospital_index]), "Unknown", hospitals$name[nearest_hospital_index]),
nearest_hospital_lon = hospital_coords[nearest_hospital_index, 1],
nearest_hospital_lat = hospital_coords[nearest_hospital_index, 2],
travel_time_min = apply(travel_time_matrix, 1, min),
stringsAsFactors = FALSE
)
# Ensure `batch_results` has the same columns as `results`
if (identical(colnames(results), colnames(batch_results))) {
results <- rbind(results, batch_results)
} else {
warning("Column mismatch detected, skipping batch.")
}
}
# Merge results with grid centroids
grid_centroids <- grid_centroids %>%
left_join(results, by = c("row.names" = "grid_id"))